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Abstract

Worldwide developments concerning infectious diseases
and bioterrorism are driving forces for improving aber-
rancy detection in public health surveillance. The perfor-
mance of an aberrancy detection algorithm can be mea-
sured in terms of sensitivity, specificity and timeliness.
However, these metrics are probabilistically dependent
variables and there is always a trade-off between them. This
situation raises the question of how to quantify this trade-
off. The answer to this question depends on the character-
istics of the specific disease under surveillance, the charac-
teristics of data used for surveillance, and the algorithmic
properties of detection methods. In practice, the evidence
describing the relative performance of different algorithms
remains fragmented and mainly qualitative. In this paper,
we consider the development and evaluation of a Bayesian
network framework for analysis of performance measures
of aberrancy detection algorithms. This framework enables
principled comparison of algorithms and identification of
suitable algorithms for use in specific public health surveil-
lance settings.

Introduction
Outbreaks of infectious diseases occur regularly and re-

sult in substantial cost and morbidity [10]. Unfortunately,
the risk of future outbreaks is considerable due to the con-
tinuing emergence of new diseases and the limitations of
our current systems [5, 14]. If future outbreaks are detected
rapidly, however, effective interventions exist to limit the
health and economic impacts [4, 17]. Traditional public
health surveillance systems are expected to detect disease
outbreaks, but these systems have failed to detect many
such outbreaks, including the SARS outbreak in Toronto,
the Cryptosporidiosis outbreak in Milwaukee, and the E.
coli outbreak in Walkerton. These failures had tragic con-
sequences, including thousands infected and many deaths
[15, 12, 16]. Reviews of the public health response follow-
ing these and other outbreaks consistently call for improve-
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ments to the public health surveillance infrastructure. In
response, many public health agencies have adopted syn-
dromic surveillance systems, which acquire data in real-
time from clinical and other settings, group records into
broad syndromes, and apply statistical algorithms to de-
tect aberrancies. Many aberrancy detection algorithms have
been introduced in the last decade [7, 9]. However, these al-
gorithms perform differently when applied to different data
sets in different situations [2]. Evidence describing the per-
formance of these algorithms under various conditions re-
mains limited and mainly qualitative [1]. It is important to
be able to select an algorithm, with a particular parameter
tuning in a particular surveillance application, with good
level of confidence on its performance.

In our earlier work [3], a model of surveillance data and
outbreak signals was created. We used BioSTORM [13]
as a testbed to evaluate algorithms used widely by the sur-
veillance community and to assess the accuracy and timeli-
ness of these algorithms under different parameter settings;
the results of these evaluation studies were used to create
a database; and a logistic regression model was used to
predict the ability of different algorithms to detect differ-
ent types of outbreaks in several surveillance configurations
using this database. While the work generates insights, we
noted limitations of logistic regressions in handling multi-
ple outcomes in a single model and in allowing for com-
plex relationships between covariates. In this paper, we ad-
dress these limitations by developing a framework for rea-
soning under uncertainty about the performance of outbreak
detection algorithms. This framework permits a more flex-
ible representation of dependencies between the variables
involved and represents different performance metrics in a
single model. This representation is essential for quantify-
ing the trade-offs between performance measures. In addi-
tion to predicting algorithm performance in a unified form,
our model allows us to discover knowledge about the per-
formance of aberrancy detection algorithms used in public
health surveillance.
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Method
We used Bayesian networks in probabilistic evaluation

of detection methods to answer the question of which algo-
rithmic setting is more likely to result in a desirable overall
performance. A Bayesian network [8] is a directed acyclic
graph (DAG), in which nodes represent random variables
and edges represent conditional dependencies between vari-
ables. Each nodes is associated with a conditional proba-
bility table (CPT). The probability of a node can be calcu-
lated when the values of its incoming nodes are known. To
describe a Bayesian network we need to specify the graph
structure and the values of each CPT based on data. Con-
ceptually, a Bayesian network can help to answer questions
about the features of algorithms that are important in dif-
ferent surveillance contexts. For instance, we might be in-
terested to set as evidence the types of outbreaks expected,
and ask which algorithmic features will maximize sensitiv-
ity while observing the concurrent effect on timeliness. For
the purpose of demonstration in this paper, we selected the
same set of algorithms, data signals, and outbreak charac-
teristics that we used in our earlier work [3] to allow a direct
comparison between the Bayesian network results and our
earlier results from logistic regression analysis.

In order to collect the evidence about the detection per-
formance of the selected methods, we ran different surveil-
lance scenarios on a variety of detection configurations and
stored the results. The configurations and the results will
serve as input to Bayesian network model construction. In
this section we briefly describe this input data and their cor-
responding variables in the network.

Baseline Surveillance Data

We used a set of surveillance data created by researchers
at the CDC [6] for the objective of comparison between de-
tection algorithms. Each data set contains 1000 simulated
daily time series over 6 years (1994-1999) containing no
outbreaks. The features of these data include resolution,
seasonality, trend, mean, and variance. Means and standard
deviations in the baseline data were based on observed val-
ues from national and local public health systems and syn-
dromic surveillance systems, with the adjustments made for
days of the week, holidays, post-holiday periods, seasonal-
ity, and trend [6].

Outbreak Characteristics

A variety of simulated outbreak signals, also developed
by researchers at the CDC, were superimposed on the base-
line data. The signals included 1-day spikes and multi-
day signals generated using lognormal or inverse lognor-
mal functions. We characterized these signals using non-
parametric measures of the signal, such as the peak size ex-
pressed in the units of standard deviation of the baseline
and the day of the peak amplitude of the signal. Table 1
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present these variables and their discretization level used in
our Bayesian network model.

Detection Methods
We choose a family of algorithms widely used in pub-

lic health surveillance, C1, C2 and C3 algorithms used in
the Early Aberration Reporting System (EARS) software
developed by the CDC [6]. These algorithms make an alert-
ing decision for each day in a time series by comparing a
test statistic to a historical mean calculated from the seven
previous days in the baseline data and are closely related to
statistical process control methods such as Shewhart charts
[11] and cumulative sums (CUSUMs). More precisely, C-
algorithms are defined as variants of single-sided CUSUM.
The computation of a test statistic for these algorithms is
different from traditional cumulative summation in that C1
and C2 use only the current observation, which makes them
more similar to Shewhart charts and the C3 algorithm sums
two previous observations and the current one. A true cu-
mulative sum, on the other hand, can be influenced by an
infinite number of prior observations. The methods C1, C2,
and C3 were named according to their degree of sensitiv-
ity, with C1 being the least sensitive and C3 the most sen-
sitive. The distinctions among the three C-algorithms are
in a two-day guardband 1 and the inclusion of two recent
observations (memory) in the computation of a test statis-
tic. C1 uses neither guard-band nor memory; C2 uses the
guard-band, but not memory; and C3 uses both. All three
algorithms were also configured to use a range of alerting
thresholds corresponding to varying specificity levels. Ta-
ble 2 shows the features related to these algorithms.

Database Specification
In specifying the performance measures, we ran a large

number of experiments using the BioSTORM (Biologi-
cal Spatio-Temporal Outbreak Reasoning Module) software
[13]. Each experiment assigned a different set of parame-
ters values to the outbreaks and detection algorithms. The
results for detection and timeliness as well as the settings
for algorithm parameters, outbreak parameters, and data
sources were recorded in a database. We applied each of
the C algorithms at 10 different levels of specificity to each
signal producing a total of 1,076,880 observations of the
variables listed in Table 2. In 748,964 (69.5%) of observa-
tions, an outbreak was detected.

Model Specification
We use a Bayesian network to quantify relationships be-

tween features of data types, outbreak signals, detection
1Guard-band is a buffer period or a time interval between the baseline

and test periods. Guard-band is useful to separate the observed values from
the data used to calculate the historical mean in the baseline, in particular
when early undetected outbreak effects may inflate the baseline data and
increase the data expectation
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Table 1. Outbreak parameters
Variable Description Range Levels

Duration Length of outbreak signal in days 0-16 0-1, 1-8, 8-16
Peak day Day when peak signal occurs within outbreak 0-15 0-4, 4-15
Peak size Number of standard deviations of outbreak signal above baseline mean binary 2,3
Spike Outbreak is a single-day spike binary 0,1

Table 2. Algorithm parameters
Variable Description Range Levels

Specificity Proportion of non-outbreak days with alarm 0.87-0.97 0.87-0.89, 0.89-0.91, 0.91-0.93,
0.93-0.95, 0.95-0.97

Guardband Guardband of two days is used binary 0,1
Memory Memory of past observations is used to compute running sum binary 0,1
Detected Sensitivity per outbreak binary 0,1
Detection day Day when outbreak detected 0-15 0-2, 2-15
methods, and outbreak detection performance that exist in
the database we generated through the experimental studies
explained above. We initially found the skeleton structure
of the network from the data with no missing values using
the structure learning method of Max-Min Hill-Climbing
(MMHC) [18]. This type of search is very useful when
dealing with large data sets like ours because of its compu-
tational efficiency. We refined the structure manually to in-
corporate the domain knowledge about associations among
the variables. More precisely, we reversed the direction of
the edges based on the Markov equivalence property where
possible, in order to better model the known causal rela-
tionships. The model obtained is shown in Figure 1. In the
network,we represented a spike as simply an outbreak of 1-
day duration, which is encoded as a level of the duration
variable. Prior to observing the data, a uniform distribution
of probabilities among all states of a node was assigned to
each CPT. These probabilities were then updated through a
learning process, as we provide each data instance. The
CPTs of our network in Figure 1 were learned from our
database explained earlier, using expectation maximization
(EM)algorithm in NeticaTM 2.0 software. EM learning
repeatedly tries to find a better network (in log likelihood
sense) by doing an expectation (E) step followed by a max-
imization (M) step. Therefore, the log likelihood of the new
net is always as good as or better than the previous one.
This process is repeated until the log likelihood numbers
are no longer improving enough, or the desired number of
iterations has been reached. These quantities can be speci-
fied by the user. Given the structure of a BN, EM converges
to an optimal solution for the parameters, according to the
3
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Figure 1. A representative section of the Bayesian net-
work model for aberrancy detection

data.

Model Evaluation and Applications

We evaluated the accuracy of the Bayesian network
model for predicting sensitivity and timeliness. A 10-fold
cross validation was used to evaluate the predictive ability
of the Bayesian network. We used the network model for
different analyses by providing evidence in some nodes and
infer the values for others. Evidence is provided about vari-
ables by manually setting the probability for the value of
a feature to 1 or 0. The number of cases in the database
that support an observation is recorded in order to provide
the confidence interval for the posterior belief. The initial
belief for the value of each variable is the marginal proba-
bility for each node after estimating the conditional proba-
bilities for the network. We particularly used the model to
infer how different algorithms and outbreak characteristics
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could influence algorithm performance. The model allows
for three-way reasoning and quantization of the trade-offs
between sensitivity, specificity and timeliness. For exam-
ple, we can provide the specificity measures as evidence and
infer the changes in sensitivity and timeliness. Using the
Bayesian network that we constructed for the EARS algo-
rithms, we set as evidence the types of outbreaks expected,
and inferred which algorithm features are likely to increase
sensitivity while observing the concurrent effect on timeli-
ness.

Results

In our model evaluation we found that the accuracy of
Bayesian models in predicting whether or not an outbreak
would be detected (variable Detected, i.e. sensitivity) by C-
algorithms on detection of multi-day outbreaks had an area
under the curve of 0.79, similar to the logistic regression
results [3]. The Bayesian network model had a smaller error
rate of 18% for predicting the Detected variable and an error
rate of 22% for Detection Day given the specified resolution
for these variables as in Table 2.

Table 3 summarizes the results of inference analysis
where the outbreak was assumed to have a peak size of three
times the standard deviation of the baseline data, the dura-
tion of the outbreak was between 8 and 16 days, and the
peak of the outbreak occurred before the fourth day. In the
three last columns, we infer from the network sensitivity
and timeliness for the three EARS algorithms for a specific
type of outbreak. We specify the algorithm by providing
evidence about the value of algorithm variables (e.g., for
C1, which has neither a guard band nor memory, we set
both P(Guard band=True) and P(Memory=True) to 0) and
the type of outbreak by providing evidence about the out-
break variables. The posterior belief is then estimated for
the variables of interest, namely outbreak detected and day
detected. Averaging over the full range of specificity exam-
ined in the experimental studies (0.87−0.97), the results in
this example indicate that inclusion of a guard band interval
(i.e., moving from C1 to C2) increases sensitivity from 0.68
to 0.82 and improves the probability of detection in less
than two days from 0.63 to 0.70. Inclusion of a memory
parameter improves sensitivity further, from 0.82 to 0.87
and improves the probability of detection within two days
slightly, from 0.70 to 0.72. All of these differences are sta-
tistically significant (standard error of each point estimate is
very small due to the large number of observations and the
relatively simple structure of the network).

The effect of specificity on time to detection was investi-
gated through providing evidence on distinctive algorithmic
features among C-algorithms (Memory and Guard band).
The results are presented in Figure 2. It is apparent that
different levels of specificity have different levels of impact
on these algorithms. This difference is more pronounced as
4
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Figure 2. The relationship between the specificity of a
detection method and likelihood of detecting an outbreak in
less than two days by C-algorithms.

the false alarm rate decreases with higher levels of speci-
ficity. We performed this analysis without providing any
evidence on the sensitivity of these algorithm, although in-
formation about the sensitivity can be inferred at the same
time. It should be noted that sensitivity can be treated as a
special case of timeliness in which the detection time is in-
finite. Therefore we can join the two corresponding nodes
in the network, if the accumulated sensitivity over time is
not important.

Discussion

Our results suggest that guard band inclusion leads to
better performance in terms of sensitivity and timeliness.
The guidance for a practitioner, therefore, is that inclusion
of a guard band is important for detecting the type of out-
breaks we considered and that also using a memory para-
meter will further improve detection performance. These
results are very important given the widespread use of the
EARS algorithms in public health surveillance. Another
practical implication of our findings relates to resources
used by public health institutions to handle false alarms.
Results from Figure 2 show that the distinction between dif-
ferent C-algorithms is mainly on high specificities. There-
fore, if high sensitivity is required and personnel and re-
sources are available to handle high false alarms it does not
matter much which algorithm to choose but if the resources
are limited then algorithm C3 would be more desirable in
providing the best timeliness among C-algorithms.

We studied limited number of features of outbreaks and
a small number of algorithms. In the future, we plan to ex-
tend this framework as we encode additional algorithms in
terms of our unified model and run additional experimental
studies through BioSTORM and extend the database results.
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Table 3. Example of inferences from the Bayesian network in Figure 1.
Feature Type Variable Value Initial Belief C1 C2 C3

Algorithm Guard band P(Guard band=1) 0.67 0.00 1.00 1.00
Memory P(Memory=True) 0.33 0.00 0.00 1.00

Detection Detected P(Detected=True) 0.70 0.68 0.82 0.87
Day Detected P(Day Detected¡ 2) 0.64 0.63 0.70 0.72

Outbreak Peak Size P(Peak Size=3) 0.50 1.00 1.00 1.00
Peak Day P(Peak Day < 4) 0.69 1.00 1.00 1.00
Duration P(8 < Duration < 16) 0.40 1.00 1.00 1.00
We will iteratively re-learn the network structure and con-
ditional probability tables, and use the network to update
the determinants of outbreak detection and guide the use of
outbreak detection algorithms.

Conclusion
There is currently very little explicit guidance available

for public health practitioners as they attempt to select al-
gorithms and tune them for use in syndromic surveillance
systems. In this paper, we used a Bayesian network frame-
work for reasoning under uncertainty about the performance
of outbreak detection algorithms and discussed the develop-
ment and evaluation of this model. We have already noted
with our initial network for the C algorithms that although a
guardband facilitates detection, it can also lead to later de-
tection for certain types of outbreaks. Balancing this trade-
off between sensitivity and timeliness is of fundamental im-
portance to surveillance and deserves further attention. Our
promising results suggest further directions for research, in-
cluding consideration of different types of outbreaks, wider
range of algorithms and data sources.
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